

智能文体视觉系统

内容

- 关于我们
- •核心部件简介
- 产品方向
 - 车载 ADAS*和自动驾驶
 - 无人机
 - 机器人
- 产品计划
- 融资计划

关于我们 – 简介

- 江蘇钜芯集成電路技術股份有限公司(簡稱"NST")是一家科技創新型的半導體集成電路設計公司,是一個年輕、有活力、又擁有成熟技術沉澱的優秀團隊。
 - 公司核心骨幹來自歐美著名廠商,包括芯片設計、芯片制造企業的技術精英。
 - 公司始創于2006年,先後在無錫和上海形成兩個研發中心,在深圳形成了較爲成熟的市場體系。
 - 通過幾年的技術整合和技術積累,鉅芯已完成了幾大領域的芯片設計與研發,
 - 目前緻力于多媒體處理芯片、
 - MCU微控制芯片、
 - RF射頻芯片
 - 電源驅動芯片的設計與開發
 - 以及系統集成與系統平台的建設與開發。

立体视觉 - 简介

- 基础定位
 - 提供智能立体视觉软硬件完整解决方案
 - 【基础硬件】 立体视觉传感器组件 -- 小尺寸, 远距离, 高精度空间测距
 - 【标配组件】 端上的视觉感知+定位+分析决策 -- 全类型对象检测跟踪技术
 - 【高级智能】 D2 (基于深度信息的深度学习)智能识别技术
- 研发团队
 - 来自世界500强,国际汽车产业的双目领域有8年以上经验
 - 与国内主机厂,Tier1*,自动驾驶科技公司以及无人机公司深度合作

核心基础硬件部件简介

- 小尺寸+远距离+高精度 实时空间测距
 - 高精度测距100米
 - · 超小型8厘米Baseline*-世界最小
 - 720线深度分辨率
 - 高速深度计算(<3ms)

*Baseline:目距,两个摄像头之间的距离

* 根据使用需要,可以定制

项目	参数
基线长度	8CM
测距范围	1.5M~100M
测距误差	1%~5%
分辨率	720P
水平视场角	~42°
功耗	<5W
输出延时	<3ms

产品方向 ADAS和自动驾驶

业界现状

日本、欧洲、美国对于立体相机的应用现状第三方报告

产品功能形态主要功能模块

市场分析

车载立体视觉应用 – 车型统计

- 2014年之前
 - Subaru(3)

- 2014年-2016年
 - Mercedes Benz (5)
 - BMW (2)
 - Subaru (3)
 - Suzuki (2)
 - Land Rover (2)
 - Jaguar (2)
 - Robot Taxi (1)
 - Cruise Automation (1)
 - •

第三方报告

(BIMarket: 2015-2020全球与中国视觉类ADAS产业研究报告)

原文:

"未来的发展方向是Stereo Camera而非Mono Camera,尤其是在AEB领域。AEB牵涉到人的生命,必须有尽量多的性能冗余,这样才能最大限度地保证驾驶者安全。Stereo Camera对比Mono Camera,在最重要的行人(Pedestrians)识别(Recognition)方面具备压倒性的优势,但目前很多厂家还是采用Mono Camera,因为目前AEB标配少、且多为选配(Optional),由于Stereo Camera成本更高,结果就是价格很高而乏人问津。

下一代AEB将把行人检测作为必备功能,也就是必须采用Stereo Camera,如Mercedes-Benz、Subrau、Jaguar、Suzuki一开始就坚持采用Stereo Camera,而VW、Toyota、Honda、Nissan目前的实验车型都采用了Stereo Camera。同时在Tier 1方面,Hitachi Automotive System一开始就坚持Stereo Camera,Continental、Bosch、Denso、Fujitsu-ten都是以Stereo Camera为重点发展方向,这些厂家在汽车业界都是标杆企业,他们的方向就代表了整体汽车产业的方向。"

立体视觉应用 - 日本

- 90年代 Subaru开始双目的研发,99年开始量产,2003年同日立合作研发新一代双目
 - Subaru Outback, XV, legacy
 - XV: 2011 NCAP Highest 5 Star, Outback: 2014 NCAP Highest 5 Star
 - Outback ,Legacy 2014 J-NCAP Top Score 主动安全满分
- 2014年04月《日经汽车技术》发表量产AEB*方案横向对 比评测

企业		富士重工业	沃尔沃	日产	宝马
名称		EyeSight (ver.2)	City Safety/Human Safety	Emergency Brake	Driving Assist
測试车(日:		XV	V40	X-TRAIL	M5
等级(总分		AAA (7分)	AAA (5分)	AA (3分)	AA (3分)
避免冲撞时的	对车	约50km/h (4分)	约40km/h (3分)	约30km/h (2分)	约30km/h (2分)
最大车連(括 对人		约40km/h (3分)	约30km/h (2分)	约20km/h (1分)	约20km/h (1分)
自动制动启动	力的速度	0~約140km/h	约4km/h以上	约10~80km/h(但针对停止车辆和行人启动的范围约 为10~60km/h)	约60km/h以下
主要障碍物	种类	立体摄像头	毫米波雷达/单眼摄像头 /红外线激光	单眼摄像头	单眼摄像头
TELESTIC ALVER	供应商	日立汽车系统	毫米波与摄像头: Delphi公司 (图像识别SoC为Mobileye 公司制造)激光: 大陆公司	TRW公司(图像识别SoC 为Mobileye公司制造)	Autoliv公司(图像识别SoC 为Mobileye公司制造)
系统价格(2	不含税)	10万日元	约20万日元(含其他装配)		标配

• 2015年,日本DeNA和ZMP的 自动驾驶公司Robot Taxi 配备双目

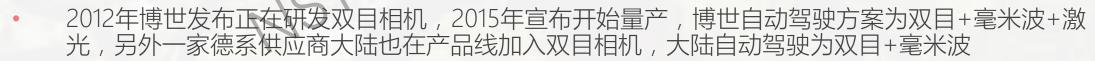
2016年 Suzuki去掉短距Lidar,加装了双目,在J-NCAP主动安全评测中分数8.9/40 增长为46/46满分

2014 J-NCAP

2016 J-NCAP

立体视觉应用 - 德国

- 奔驰一直在做双目方面的研究,侧重在自动驾驶中使用双目技术
 - 2014年奔驰S系开始配备双目
 - 到2016年奔驰S系, E系, GLE系, GLS系, Future Bus 开始配备双目,用于Intelligent Drive自动驾驶
 - 2016款E系量产车获得美国内华达自动驾驶路测资格, 是首个获得该测试许可量产车型
- 2016年宝马7系的顶配也开始配备双目,2017年1月宝马5系全系开始装配双目



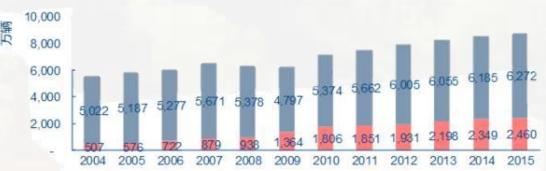
立体视觉应用 - 欧美

- 2015年Land Rover Discovery Sport配备双目, Bosch为双目提供方,采用纯双目无雷达完成高性能AEB
 - 获得2014 NCAP Safety Assist one of Best
 - 获得2015 Car of the Year Safety Award in UK

 2016年Jaguar 的 XE, XF系列 均开始配备双目

• 通用收购的Cruise Automation自动驾驶方案配备双目

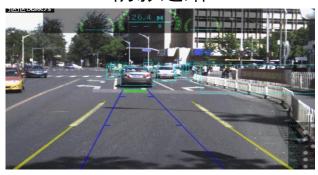
市场机遇


- 2016/8/5 C-NCAP(2018版)
 - 主动安全评分权重 15%
 - 增加AEB追尾及行人(白天)项目
 - AEB系统为标配 (>=25%)
 - 【SBD咨询公司】
 - 从2015到2020年主动安全市场
 - 保持比较稳定的年均增长30%
 - 到2020年预计达到12亿欧元
- 无人驾驶
 - 当自动驾驶成为一种趋势
 - ADAS作为其必备之器日渐风靡

2018版C-NCAP星级划分要求及各部分最低得分率要求

		各版块最低得分率要求				
2018版星级及得分率	乗员保护 行人保护 ·	主动安全				
		米贝米 炉	州央保护 11八保护	2018年	2019年	2020年
5+	95%	95%	75%	50%	55%	72%
5	85%	85%	70%	26%	38%	55%
4	75%	75%	60%	/	/	/
3	60%	65%	50%	/	/	/
2	45%	55%	40%	/	/	/
1	< 45%	< 55%	< 40%	/	/	/

图 4: 全球汽车销量超越 8000 万辆


资料来源: Marklines, 中信证券研究部整理+

功能 - 对象检测跟踪

- 实时检测跟踪汽车、行人、自行车以及各类异形车辆及各种姿势的行人等对象-探测精确距离和碰撞时间
- 实时检测车道线、栅栏、路肩以及交通标识等静态道路信息
- 实现AEB(包括车辆及行人等各类对象), ACC, LDW, TSR等功能

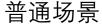
阴影道路

人车混合

雨天

逆光

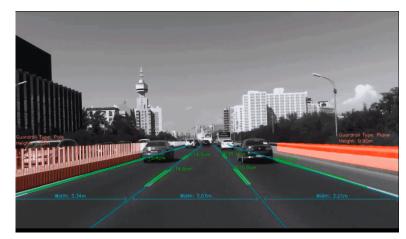
隧道

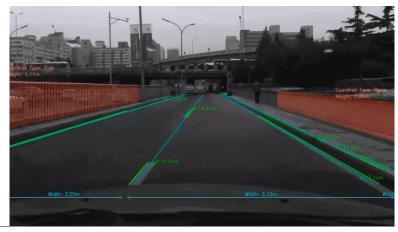


夜晚

功能 - 可行驶区域检测

- 可行驶区域检测是ADAS及自动驾驶领域中的下一代功能,例如TESLA和MOBILEYE的FREE SPACE,各提供商都在做这方面功能的研发,目前全球所有该功能的演示都是简单的高速场景,都还无法做到复杂场景下的准确全范围可行驶区域检测,**我们在复杂场景下具备明显优势**
- 结合场景理解和像素级深度,实时检测全类别的障碍,输出当前可行驶区域
- 实现全范围AEB,应用于ADAS和自动驾驶


混合场景


密集场景

高精地图生成

- 识别道路内容, 生成高精度矢量地图
 - 生成厘米级高精度矢量地图(车道宽度10cm内误差)
 - 自动检测识别车道线,栅栏,路肩,交通标志等空间位置及尺寸
 - 自动移除道路动态对象包括车辆行人等非道路干扰数据

辅路地图

车载立体视觉技术 - 竞争对比

	Metoak	В	A	Н
测距范围	0-100m	0-60m	0-90m	0-100m
尺寸 Baseline	8cm	12cm	>16cm	16-32cm
测距精度	96-99%	N/A	N/A	N/A
		EMI		
主芯片	85K(LC) FPGA	85K(LC)*2 FPGA	125K(LC) FPGA	ASIC

小结:

- 双目最为核心的性能指标是测距范围和精度,测距性能是竞争对手的两倍左右。而在尺寸上,目前研发出世界上最小的车载双目,要远小于H的尺寸,是对方的三分之一左右,性能,尺寸是主机厂极度重视的两个指标。
- 高性能, 小尺寸, 低成本是我们的综合优势, 同时我们可以根据主机厂需求联合按需定制。

测试视频

NST CONFIDENTIAL

功能参数

对象检测跟踪

项目	参数	
检测类型	货/卡车、小汽车、客运车、常见异形车	
	非机动车 (电动车、摩托车)	
	行人	
	其他行车障碍物	<
识别距离	车辆:>= 90m	
	非机动车/行人:>=60m	
输出内容	目标跟踪ID	
	目标类型	
	坐标	
	尺寸	
	速度	
	碰撞时间	

车道分割物检测

项目	参数
检测类型	车道线
	路肩
	栅栏
识别距离	车道线/路肩:>= 50m
	栅栏:>=60m
输出内容	模型参数
	位置
	颜色/类型

可行驶区域

项目	参数
检测距离	2m~70m
输出内容	雷达图 (顶视图、相机坐标系)
	透视图 (图像坐标系)

让所有智能机器人拥有一双聪明的眼睛

